190(2 / 3)
布伦德道,“普利斯曼定理看过吗,它比较详细的表述了曲率如何影响基本群。”
而在旁人看来,两人完全是交谈甚欢,而在他们旁边的人完全听不懂他们两个在讨论什么。
这个时间正值暑假,来欧洲旅行的不少,比较年轻的像是学生一样的人就忍不住的看向他们两人,有一个还忍不住拍了照片,悄悄的询问同桌,“你们能听得懂他们在交流什么吗?”
其他人纷纷摇了摇头,“我看报道,最近欧洲数学会要在这里召开,他们应该是来参加的人。”
“他们看起来一点不像是数学家啊。”
“尤其是那个女生,看起来好小。”
在他们印象中,数学家应该都是头发花白,年过半百,可无论是布伦德还是洛叶都颠覆了他们的想象,这也太年轻了。
他们是外行,可是餐厅却不乏有内行,他们是绝对认得布伦德的,看着他居然和一个小女生交谈甚欢,他们都不由的想揉一揉眼睛,确定没有错之后,看洛叶的眼神就多了几分奇异。
布伦德也没有想到他居然可以和洛叶基本上没有障碍的交流下去,不但是曲率和基本群,洛叶懂黎曼几何,辛几何,拓扑几何,分形几何,有些涉猎他自己都没有她来的广。
他比洛叶这个学生要忙多了,在不得不结束和她的谈话时,非常诧异的问道,“你对几何学的认识明显比代数学要好,为什么要选择的群论?”
洛叶当然不会和他说真的原因,只是道,“等我硕博的时候应该会选择代数几何。”
布伦德道,“那应该很快了。”
他20岁就拿到了博士学位,和他比洛叶的进度算是慢了,可是经过刚刚的交谈,他相信只要他愿意,应该会很快拿到硕士学位和博士学位,他匆匆写下了自己的邮箱,“如果你在微分几何上有什么问题可以和我讨论。”
欧洲数学会主要是面向于在欧洲工作以及欧洲籍贯的数学家,布伦德拿到博士学位后就开始在斯坦福担任教授,现在在哥伦比亚大学任教,可以说他已经许久没有回过欧洲了,这次回来,不但要准备报告,还要和一众故人联络。
等布伦德走后,洛叶收好了纸条,吃完剩下的东西才继续上楼。
第二天布伦德的报告会,洛叶也去听了,下面做的满满的,其中不乏知名的数学家。
而布伦德的补充主要是在对于在他证明武义-劳森猜想中运用的的一个泛函方程,正是因为这个泛函方程,让他有了灵光一闪,最终用一个简单无比的方式来证明了这个猜想。
而光是一个补充,是无法支撑过一个小时的报告会的,在讲完这个泛函方程后,他又开始讲起了让自己之前发表过微分球面定理(Differeheorem),也是对那篇论文做一个重要补充,讲其中一个关键点,三维流行几何。
“……任何紧致,可定向的三维流行,当用其中一些整正互补相互交的球面和环面去切,对一个紧致单联通的黎曼流行,它的截面曲率位于……”