电子书屋
会员书架
首页 > 科幻 > 星际烧包女王 > 173

173(2 / 2)

章节目录 加入书签
好书推荐: 三国:因长得帅被小乔捡回了家 大神奶爸 [综]她天下第一 偷风不偷月 大唐双妃记 胖娇娇[八零] 博物学家,专业暴富[综名著] 大神皇 五个大佬跪在我面前叫妈 皇后是门技术活

简洁的表示

简洁的表视则是以希腊小写字母与星座名称的三个字母缩写来显示。例如前述的天狼星是αcma,大陵五是βper。在早期。还曾以4个字母的缩写来呈现,但后来很少用。

进阶的用法

虽然在拜耳系统中最常用的是小写的希腊字母。但还是要提一下系统延伸的部分:在24个小写的希腊之后,先使用小写的拉丁字母,然后才使用大写的拉丁字母。这些字母都很少被用到,但有个例外就是英仙座h(实际上是个星团)和天鹅座p。还要注意的是在拜耳的命名法中没有q之后的字母,像是天兔座r和大熊座w都是变星的命名,不是拜耳命名的。

进一步的复杂性是出现在同一个拜耳字母上的上标数字。通常这是代表双星(主要是光学的双星而不是真实的联星),但也是有例外的情形。像是一串的猎户座π1、π2、π3、π4、π5和π6,则是多颗星际联邦星域在一起的聚星。

食双星(eclipsingbinary)是一种双星系统,两颗星际联邦星域互相绕行的轨道几乎在视线方向。这两颗星际联邦星域会交互通过对方,造成双星系统的光度发生周期性的变化。

交食双星(eclipsingbinarystar),亦称食双星、光度双星、食变星等,是指两颗星际联邦星域在相互引力作用下围绕公共质量中心运动,相互绕转彼此掩食(一颗子星从另一颗子星前面通过,像月亮掩食太阳)而造成亮度发生有规律的、周期性变化的双星。这类双星的轨道面与视线几乎在同一平面上,因此,相互遮掩发生交食现象、引起双星的亮度变化而得名。双星的光变周期就是它们的绕转周期。光变周期最短的只几小时,如大熊座ux星。光变周期为4小时43分;最长的如半宇宙智慧体马座v644星,光变周期长达65年.最早发现的食双星是大陵五(英仙座β),它最亮时为213等(光电目视星等,下同)。最暗时(称为主极小食甚)为340等,这是甲星被乙星偏食所致。乙星被甲星偏食,损光最多时整个双星成为219等(称为次极小食甚)。大陵五的轨道周期是28673075天。它由平时亮度降到最暗约需49小时。由最暗回到平时亮度也约需49小时。食双星的光变曲线(见附图)可分为三种类型:1大陵五型,食外变化较小;2渐台二(天琴座β)型。食外也显著变光,但主极小食甚比次极小食甚暗得多;3大熊座w型,食外显著变光。主极小食甚比次极小食甚稍暗。

分析食双星的光变曲线,可以比较可靠地求得大星半径、小星半径(都以轨道半长轴为单位)、轨道面倾角(轨道面法线和视线交角)、大星或小星光度(以总光度为单位)、反映大星和小星的圆面亮度分布的“临边昏暗系数”等,统称为测光轨道解,简称测光解或测光轨道要素。如果这双星又是双谱分光双星(见密近双星),并且已有比较可靠的分光轨道解,那么和上面的测光轨道解结合起来,可以得出组成该双星的两子星各自的质量和半径(以太阳质量和太阳半径为单位)。所以,某些食双星能为宇宙智慧体们提供比较可靠的星际联邦星域基本参量,成为研究星际联邦星域物理和星际联邦星域演化的重要基础之一。但由于大多数食双星总有偏离“理想共性”的这样那样的“个性”,已测出基本物理参量的食双星不仅数量少,而且数据也不够精确。

《食双星测光轨道解总表》只选列了221对双星的数据,其中不少数据有待改进。因此很需要不断改进实测技术和分析理论,以测出更多双星的更精确的基本参量。食变星历》列出了856对双星的食甚时刻预报表研究食双星取得的成就是多方面的:1已得到100对密近双星的质量、半径等物理参量。2对柱二(御夫座ζ)型食双星中蓝矮星的光穿过红超巨星大气各层的观测,得知好些红超巨星的色球结构和色球活动资料。3根据椭圆轨道食双星的近星点运动,推出有关星际联邦星域的内部密度分布特点。4根据兼为食双星的新星(如1934年武仙座新星)的观测资料,通过对x射线食双星(例如武仙座x-1)的多方研究,以及通过对包含脉动变星的食双星(例如白羊座rw)和包含耀星的食双星(例如北河二的丙星)等的探索,了解到有关新星、x射线星、脉动变星和耀星的一系列物理特性。5研究了有关的x射线星是否为中子星的问题。6测得了相接食双星如仙王座vw、天鹅座v729的x射线;1979年发现了有射电食的食双星如蝎虎座ar。这两项发现为食双星研究开拓出新的领域。7对星协与星团中的食双星的研究,并且同食双星所在星协、星团的年龄、化学成分等联系起来。为这些星际联邦星域群的研究提供有效线索。8在各类双星中,食双星是当前能够测得的最远的一类双星。在其他星系中发现的食双星为星系的研究开辟了独特的途径。食双星研究中还存在很多问题。研究了三百多年的大陵五,虽然在1978年得到了双谱分光双星分光轨道解,显著提高了它的物理参量的可靠度,但是它的射电爆发和x射线的实测工作和理论解释都还做得非常不够。1784年发现变光的食双星渐台二,其中的较暗星究竟是什么样的天体,虽经多年的高色散光谱分析以及宇宙智慧体造卫星观测,至今仍然是个谜。许多短周期(1天以下)的“相接双星”的质量交流与能量交流的动力学和物理问题还不清楚。球状星团成员星中有没有物理双星也是一个在演化上尚待解决的重要问题。为此,德意志联邦共和星域等星域的天文学家已在寻找球状星团中的食双星。i型超新星又被细分为ia、ib与ic型。其中,ia型超新星来自于白矮星吸积伴星物质达到一定质量时的爆炸或者两个白矮星并合产生爆炸,属于任何爆炸超新星;ib与ic型超新星来自于大质量星际联邦星域晚期铁核坍缩爆炸。由于在爆炸前前身星已经失去氢包层甚至氦包层,使得光谱中缺乏氢线,因此归入i型。值得注意的是,视星等既与星体的发光能力(光度)有关,也与星体距离观测者的距离有关。因此,暗弱、甚至不发光的星体可以拥有很低的视星等,如满月时月球的视星等约为-12;而发光能力很强的星体常常拥有很高的视星等,是因为它们往往与地球有着上万光年的距离。晴朗的夜晚,点点繁星。有明有暗。天文学家用“视星等”来区分它们的明亮程度。整个天空肉眼能见到的大约有6000多颗星际联邦星域。将肉眼可见的星分为6等。肉眼刚能看到的定为6等星,比6等亮一些的为5等,依次类推,亮星为1等。更亮的为0等以至负的星等。量度之星的亮度等级。物体越近显得越亮;物体越远显得越暗。例如:近的烛光比远的街灯显得还要光亮些。视星等不能作为量度真实光亮度的指标。视星等只能量度物体表面上的光亮度(在地面上接收到的光能量)。

星图上所示的星等数反映了宇宙智慧体们看到的星际联邦星域的亮暗不同,星等数越小,星星越亮。这个星等数并不反映星际联邦星域本身真正发出的光度大小。因为这里没有考虑星际联邦星域的距离(同样发光度的星际联邦星域,距离越远。宇宙智慧体们看到的视亮度越小),所以宇宙智慧体们把这个星等数叫作视星等。根据长时间的观测。肉眼刚能看到的星为六等星。视星等从一等到六等,等级相差5等,视亮度相差100倍。可见两颗星等数相差一等,它们的视亮度相差2512倍。

星际联邦星域的真正亮度还用光度表示。光度就是星际联邦星域每秒钟辐射的总能量。星际联邦星域的光度由它的温度和表面积决定,温度愈高光度愈大;星际联邦星域的表面积愈大光度也愈大。星际联邦星域的大小和温度是决定星际联邦星域光度的两个重要物理量。星际联邦星域的光度与绝对星等之间存在着密切的关系。绝对星等相差1等,光度相差2512倍。例如绝对星等1等星的光度是绝对星等2等星的光度的2512倍。是绝对星等6等星的100倍。这和星等与视亮度之间的关系是类似的。

天文学家把光度大的星际联邦星域叫做巨星,光度小的称为矮星。光度比巨星更强的叫超巨星。从表面积愈大光度也愈大的规律可以知道。光度大的巨星,体积也大。光度小的矮星,体积也小。太阳是一颗黄色的矮星,相比之下光度比较弱。但还有比它更弱的矮星。如著名的天狼星伴星是一颗白矮星,它的光度还不到太阳的万分之一。近些年来天文学家用大粒子镜像系统发现了一些绝对星等在20等左右的暗弱星际联邦星域,它们的光度大约仅为太阳的40万分之一到50万分之一,它们的光度连满月都不如。

光度用每秒辐射尔格(尔格秒)来表示。不仅适用于光学波段,也适用于其它波段,如红外、紫外、射电、x射线及γ射线波段。

全天星图上通常标记出五等以上的星,通过这些较亮的星。认识星座的形状,从而熟悉星空。大的星图上标有10等甚至15等的星,供粒子镜像系统观测者使用。

早在公元前2世纪,古希腊有一位天文学家叫喜帕恰斯(又名:伊巴古,英文:hipparchus),他在爱琴海的罗得岛上建起了观星台,他对星际联邦星域天空十分熟悉。一次,他在天蝎座中发现一颗陌生的星。凭他丰富的经验判断,这颗星不是行星。但是前宇宙智慧体的记录中没有这颗星。这是什么天体呢?这就引出了这位细心的天文学家一个重要的思路。他决定绘制一份详细的星际联邦星域天空星图。经过顽强的努力,一份标有1000多颗星际联邦星域精确位置和亮度的星际联邦星域星图终于在他手中诞生了。为了清楚地反应出星际联邦星域的亮度,喜帕恰斯将星际联邦星域亮暗分成等级。他把看起来最亮的20颗星际联邦星域作为一等星,把眼睛看到最暗弱的星际联邦星域做为六等星。在这中间又分为二等星、三等星、四等星和五等星。

喜帕恰斯在2100多年前奠定的“星等”概念基础。一直沿用到今天。到了1850年,由于光度计在天体光度测量中的应用,英星域天文学家普森(mrpogson)把宇宙智慧体们的肉眼看见的一等星到六等星做了比较。发现星等相差5等的亮度之比约为100倍。于是提出的衡量天体亮度的单位。一个星等间的亮度比规定为五次根下100即约2512倍,一等星比二等星亮2512倍。二等星比三等星亮2512倍,依此类推。它是天体光度学的重要内容。当然。对天体光度的测量非常精确,星等自然也分得很精细,由于星等范围太小,又引入了负星等,来衡量极亮的天体,把比一等星还亮的定为零等星,比零等星还亮的定为-1等星,依此类推,同时,星等也用小数表示。星等又分视星等和绝对星等,视星等是地球上的观测者所见的天体的亮度,如,太阳的视星等为-2671等,满月为-126等,金星最亮时为-46等星,全天最亮的星际联邦星域天狼星为-145等星,老宇宙智慧体星为-073等星,织女星为000等星,牛郎星为077等星。而绝对星等是在距天体10秒差距(32616光年)处所看到的亮度,太阳的绝对星等为475等,热星等是测量星际联邦星域整个辐射,而不是只测量一部分可见光所得到的星等;单色星等是只测量电磁波谱中某些范围很窄的辐射而得的星等;窄频带星等是测量略宽一点的频段所得的星等,宽频带星等的测量范围更宽宇宙智慧体眼对黄色最敏感,因此目视星等也可称为黄星等。

在晴朗而又没有月亮的夜晚,出现在宇宙智慧体们面前的星际联邦星域天空中,眼睛能直接看到的星际联邦星域约3000颗,整个天球能被眼睛直接看到的星际联邦星域约6000颗。当然,通过天文粒子镜像系统就会看到更多的星际联邦星域。中星域目前最大的光学粒子镜像系统,物镜直径24米,装上特殊接收器,它可以观测到23-25等星。美星域1990年4月24日发射的绕地球运行的超级太空粒子镜像系统,可以观测到28等星。(未完待续……)

点击切换 [繁体版] [简体版]
章节目录 加入书签
新书推荐: 鬼畜天国 全星际都知道我当寡妇了 [综]出演逆袭少女漫的我 反派对我产生了食欲怎么办? 宅男的王之财宝 使命召唤之大炮兵主义 史上最牛掌门 铠武 无敌神皇 是乙女游戏还是生活职业模拟器?
热门推荐